add_xgbregressor_constr#
- gurobi_ml.xgboost.xgboost_regressor.add_xgbregressor_constr(gp_model, xgboost_regressor, input_vars, output_vars=None, epsilon=0.0, **kwargs)#
Formulate xgboost_regressor into gp_model.
The formulation predicts the values of output_vars using input_vars according to xgboost_regressor. See our User’s Guide for details on the mip formulation used.
This version is for using directly with the Scikit-Learn wrapper of XGBoost. Note that only “gbtree” regressors are supported at this point.
- Parameters:
gp_model (gurobipy model) – The gurobipy model where the predictor should be inserted.
xgboost_regressor (
xgboost.XGBRFRegressor
) – The gradient boosting regressor to insert as predictor.input_vars (mvar_array_like) – Decision variables used as input for gradient boosting regressor in model.
output_vars (mvar_array_like, optional) – Decision variables used as output for gradient boosting regressor in model.
- Returns:
Object containing information about what was added to gp_model to formulate gradient_boosting_regressor.
- Return type:
Notes
See
add_predictor_constr
for acceptable values for input_vars and output_varsAlso see
gurobi_ml.sklearn.decision_tree_regressor.add_decision_tree_regressor()
for specific parameters to model decision tree estimators.- Raises:
NoModel – If the booster is not of type “gbtree”.