add_random_forest_regressor_constr#
- gurobi_ml.sklearn.random_forest_regressor.add_random_forest_regressor_constr(gp_model, random_forest_regressor, input_vars, output_vars=None, **kwargs)#
Formulate random_forest_regressor in gp_model.
The formulation predicts the values of output_vars using input_vars according to random_forest_regressor. See our User’s Guide for details on the mip formulation used.
- Parameters:
gp_model (gurobipy model) – The gurobipy model where the predictor should be inserted.
random_forest_regressor (
sklearn.ensemble.RandomForestRegressor
) – The random forest regressor to insert as predictor.input_vars (mvar_array_like) – Decision variables used as input for random forest in model.
output_vars (mvar_array_like, optional) – Decision variables used as output for random forest in model.
- Returns:
Object containing information about what was added to gp_model to formulate random_forest_regressor.
- Return type:
Notes
See
add_predictor_constr
for acceptable values for input_vars and output_varsAlso see
gurobi_ml.sklearn.decision_tree_regressor.add_decision_tree_regressor()
for specific parameters to model decision tree estimators.