add_mlp_regressor_constr#
- gurobi_ml.sklearn.mlpregressor.add_mlp_regressor_constr(gp_model, mlp_regressor, input_vars, output_vars=None, **kwargs)#
Formulate mlp_regressor in gp_model.
The formulation predicts the values of output_vars using input_vars according to mlp_regressor. See our Users Guide for details on the mip formulation used.
- Parameters:
gp_model (gurobipy model) – The gurobipy model where the predictor should be inserted.
mlpregressor (
sklearn.neural_network.MLPRegressor
) – The multi-layer perceptron regressor to insert as predictor.input_vars (mvar_array_like) – Decision variables used as input for regression in model.
output_vars (mvar_array_like, optional) – Decision variables used as output for regression in model.
- Returns:
Object containing information about what was added to gp_model to formulate mlp_regressor.
- Return type:
- Raises:
NoModel – If the translation to Gurobi of the activation function for the network is not implemented.
Notes
See
add_predictor_constr
for acceptable values for input_vars and output_vars