Gurobi Gurobi

API#

Main Function#

The main function provided by the package formulates a predictor in a Gurobi model. In most cases, it is the only function needed from the package.

Some formulations of the predictors can have additional options those are documented in the specific functions for each regression model.

add_predictor_constr(gp_model, predictor, ...)

Formulate predictor in gp_model.

Scikit-learn API#

column_transformer

Module for formulating a sklearn.compose.ColumnTransformer in a gurobipy model.

decision_tree_regressor

Module for formulating a sklearn.tree.DecisionTreeRegressor in a gurobipy model.

gradient_boosting_regressor

Module for formulating a sklearn.ensemble.GradientBoostingRegressor into a gurobipy model.

linear_regression

Module for formulating ordinary regression models into a gurobipy model.

logistic_regression

Module for formulating a sklearn.linear_model.LogisticRegression in a gurobipy model.

mlpregressor

Module for formulating a sklearn.neural_network.MLPRegressor in a gurobipy model.

pipeline

Module for formulating a sklearn.pipeline.Pipeline in a gurobipy model.

pls_regression

Module for formulating sklearn.cross_decomposition.PLSRegression in a gurobipy model.

random_forest_regressor

Module for formulating a sklearn.ensemble.RandomForestRegressor into a gurobipy model.

preprocessing

Implementation for using sklearn preprocessing object in a Guobi model.

Keras API#

keras

Module for formulating a Keras model into a gurobipy model.

PyTorch API#

sequential

Module for formulating torch.nn.Sequential model in a gurobipy model.

XGBoost API#

xgboost_regressor

Module for formulating a XGBoost gradient boosting regressor into a gurobipy model.

LightGBM API#

lgbm_regressor

Module for formulating a LightGBM gradient boosting regressor into a gurobipy model.


Internal APIs